
Matrices

Definition of a Matrix

Definition 1.1.1 (Matrix) A rectangular array of numbers is called a matrix.

We shall mostly be concerned with matrices having real numbers as entries.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns.

A matrix having m rows and n columns is said to have the order m× n.

A matrix A of order m× n can be represented in the following form:

A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









,

where aij is the entry at the intersection of the ith row and jth column.

In a more concise manner, we also denote the matrix A by [aij ] by suppressing its order.

Remark 1.1.2 Some books also use









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









to represent a matrix.

Let A =

[

1 3 7

4 5 6

]

. Then a11 = 1, a12 = 3, a13 = 7, a21 = 4, a22 = 5, and a23 = 6.

A matrix having only one column is called a column vector; and a matrix with only one row is

called a row vector.

Whenever a vector is used, it should be understood from the context whether it is

a row vector or a column vector.

Definition 1.1.3 (Equality of two Matrices) Two matrices A = [aij ] and B = [bij ] having the same order

m× n are equal if aij = bij for each i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

In other words, two matrices are said to be equal if they have the same order and their corresponding

entries are equal.
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Example 1.1.4 The linear system of equations 2x + 3y = 5 and 3x + 2y = 5 can be identified with the

matrix

[

2 3 : 5

3 2 : 5

]

.

1.1.1 Special Matrices

Definition 1.1.5 1. A matrix in which each entry is zero is called a zero-matrix, denoted by 0. For

example,

02×2 =

[

0 0

0 0

]

and 02×3 =

[

0 0 0

0 0 0

]

.

2. A matrix having the number of rows equal to the number of columns is called a square matrix. Thus,

its order is m×m (for some m) and is represented by m only.

3. In a square matrix, A = [aij ], of order n, the entries a11, a22, . . . , ann are called the diagonal entries

and form the principal diagonal of A.

4. A square matrix A = [aij ] is said to be a diagonal matrix if aij = 0 for i 6= j. In other words, the

non-zero entries appear only on the principal diagonal. For example, the zero matrix 0n and

[

4 0

0 1

]

are a few diagonal matrices.

A diagonal matrixD of order n with the diagonal entries d1, d2, . . . , dn is denoted byD = diag(d1, . . . , dn).

If di = d for all i = 1, 2, . . . , n then the diagonal matrix D is called a scalar matrix.

5. A square matrix A = [aij ] with aij =

{

1 if i = j

0 if i 6= j

is called the identity matrix, denoted by In.

For example, I2 =

[

1 0

0 1

]

, and I3 =






1 0 0

0 1 0

0 0 1




 .

The subscript n is suppressed in case the order is clear from the context or if no confusion arises.

6. A square matrix A = [aij ] is said to be an upper triangular matrix if aij = 0 for i > j.

A square matrix A = [aij ] is said to be an lower triangular matrix if aij = 0 for i < j.

A square matrix A is said to be triangular if it is an upper or a lower triangular matrix.

For example






2 1 4

0 3 −1

0 0 −2




 is an upper triangular matrix. An upper triangular matrix will be represented

by









a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...

0 0 · · · ann









.

1.2 Operations on Matrices

Definition 1.2.1 (Transpose of a Matrix) The transpose of an m × n matrix A = [aij ] is defined as the

n×m matrix B = [bij ], with bij = aji for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The transpose of A is denoted by At.



1.2. OPERATIONS ON MATRICES

That is, by the transpose of an m× n matrix A, we mean a matrix of order n×m having the rows

of A as its columns and the columns of A as its rows.

For example, if A =

[

1 4 5

0 1 2

]

then At =






1 0

4 1

5 2




 .

Thus, the transpose of a row vector is a column vector and vice-versa.

Theorem 1.2.2 For any matrix A, we have (At)t = A.

Proof. Let A = [aij ], A
t = [bij ] and (At)t = [cij ]. Then, the definition of transpose gives

cij = bji = aij for all i, j

and the result follows. �

Definition 1.2.3 (Addition of Matrices) let A = [aij ] and B = [bij ] be are two m×n matrices. Then the

sum A+B is defined to be the matrix C = [cij ] with cij = aij + bij .

Note that, we define the sum of two matrices only when the order of the two matrices are same.

Definition 1.2.4 (Multiplying a Scalar to a Matrix) Let A = [aij ] be an m × n matrix. Then for any

element k ∈ R, we define kA = [kaij ].

For example, if A =

[

1 4 5

0 1 2

]

and k = 5, then 5A =

[

5 20 25

0 5 10

]

.

Theorem 1.2.5 Let A,B and C be matrices of order m× n, and let k, ℓ ∈ R. Then

1. A+B = B +A (commutativity).

2. (A+B) + C = A+ (B + C) (associativity).

3. k(ℓA) = (kℓ)A.

4. (k + ℓ)A = kA+ ℓA.

Proof. Part 1.

Let A = [aij ] and B = [bij ]. Then

A+B = [aij ] + [bij ] = [aij + bij ] = [bij + aij ] = [bij ] + [aij ] = B +A

as real numbers commute.

The reader is required to prove the other parts as all the results follow from the properties of real

numbers. �

Exercise 1.2.6 1. Suppose A+B = A. Then show that B = 0.

2. Suppose A+B = 0. Then show that B = (−1)A = [−aij ].

Definition 1.2.7 (Additive Inverse) Let A be an m× n matrix.

1. Then there exists a matrix B with A+ B = 0. This matrix B is called the additive inverse of A, and

is denoted by −A = (−1)A.

2. Also, for the matrix 0m×n, A+0 = 0+A = A. Hence, the matrix 0m×n is called the additive identity.



Multiplication of Matrices

Definition 1.2.8 (Matrix Multiplication / Product) Let A = [aij ] be an m× n matrix and B = [bij ] be

an n× r matrix. The product AB is a matrix C = [cij ] of order m× r, with

cij =

n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj.

Observe that the product AB is defined if and only if

the number of columns of A = the number of rows of B.

For example, if A =

[

1 2 3

2 4 1

]

and B =






1 2 1

0 0 3

1 0 4




 then

AB =

[

1 + 0 + 3 2 + 0 + 0 1 + 6 + 12

2 + 0 + 1 4 + 0 + 0 2 + 12 + 4

]

=

[

4 2 19

3 4 18

]

.

Note that in this example, while AB is defined, the product BA is not defined. However, for square

matrices A and B of the same order, both the product AB and BA are defined.

Definition 1.2.9 Two square matrices A and B are said to commute if AB = BA.

Remark 1.2.10 1. Note that if A is a square matrix of order n then AIn = InA. Also for any d ∈ R,

the matrix dIn commutes with every square matrix of order n. The matrices dIn for any d ∈ R

are called scalar matrices.

2. In general, the matrix product is not commutative. For example, consider the following two

matrices A =

[

1 1

0 0

]

and B =

[

1 0

1 0

]

. Then check that the matrix product

AB =

[

2 0

0 0

]

6=
[

1 1

1 1

]

= BA.

Theorem 1.2.11 Suppose that the matrices A, B and C are so chosen that the matrix multiplications are

defined.

1. Then (AB)C = A(BC). That is, the matrix multiplication is associative.

2. For any k ∈ R, (kA)B = k(AB) = A(kB).

3. Then A(B + C) = AB +AC. That is, multiplication distributes over addition.

4. If A is an n× n matrix then AIn = InA = A.

5. For any square matrix A of order n and D = diag(d1, d2, . . . , dn), we have

• the first row of DA is d1 times the first row of A;

• for 1 ≤ i ≤ n, the ith row of DA is di times the ith row of A.

A similar statement holds for the columns of A when A is multiplied on the right by D.

Proof. Part 1. Let A = [aij ]m×n, B = [bij ]n×p and C = [cij ]p×q. Then

(BC)kj =

p
∑

ℓ=1

bkℓcℓj and (AB)iℓ =

n∑

k=1

aikbkℓ.



1.3. SOME MORE SPECIAL MATRICES

Therefore,

(
A(BC)

)

ij
=

n∑

k=1

aik
(
BC

)

kj
=

n∑

k=1

aik
(

p
∑

ℓ=1

bkℓcℓj
)

=

n∑

k=1

p
∑

ℓ=1

aik
(
bkℓcℓj

)
=

n∑

k=1

p
∑

ℓ=1

(
aikbkℓ

)
cℓj

=

p
∑

ℓ=1

(
n∑

k=1

aikbkℓ
)
cℓj =

t∑

ℓ=1

(
AB

)

iℓ
cℓj

=
(
(AB)C

)

ij
.

Part 5. For all j = 1, 2, . . . , n, we have

(DA)ij =

n∑

k=1

dikakj = diaij

as dik = 0 whenever i 6= k. Hence, the required result follows.

The reader is required to prove the other parts. �

Exercise 1.2.12 1. Let A and B be two matrices. If the matrix addition A + B is defined, then prove

that (A+B)t = At +Bt. Also, if the matrix product AB is defined then prove that (AB)t = BtAt.

2. Let A = [a1, a2, . . . , an] and B =









b1

b2
...

bn









. Compute the matrix products AB and BA.

3. Let n be a positive integer. Compute An for the following matrices:

[

1 1

0 1

]

,






1 1 1

0 1 1

0 0 1




 ,






1 1 1

1 1 1

1 1 1




 .

Can you guess a formula for An and prove it by induction?

4. Find examples for the following statements.

(a) Suppose that the matrix product AB is defined. Then the product BA need not be defined.

(b) Suppose that the matrix products AB and BA are defined. Then the matrices AB and BA can

have different orders.

(c) Suppose that the matrices A and B are square matrices of order n. Then AB and BA may or

may not be equal.

1.3 Some More Special Matrices

Definition 1.3.1 1. A matrix A over R is called symmetric if At = A and skew-symmetric if At = −A.

2. A matrix A is said to be orthogonal if AAt = AtA = I.

Example 1.3.2 1. Let A =






1 2 3

2 4 −1

3 −1 4




 and B =






0 1 2

−1 0 −3

−2 3 0




 . Then A is a symmetric matrix and

B is a skew-symmetric matrix.



2. Let A =






1√
3

1√
3

1√
3

1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6




 . Then A is an orthogonal matrix.

3. Let A = [aij ] be an n×n matrix with aij =







1 if i = j + 1

0 otherwise
. Then An = 0 and Aℓ 6= 0 for 1 ≤ ℓ ≤

n − 1. The matrices A for which a positive integer k exists such that Ak = 0 are called nilpotent

matrices. The least positive integer k for which Ak = 0 is called the order of nilpotency.

4. Let A =

[

1 0

0 0

]

. Then A2 = A. The matrices that satisfy the condition that A2 = A are called

idempotent matrices.

Exercise 1.3.3 1. Show that for any square matrix A, S = 1
2 (A + At) is symmetric, T = 1

2 (A − At) is

skew-symmetric, and A = S + T.

2. Show that the product of two lower triangular matrices is a lower triangular matrix. A similar statement

holds for upper triangular matrices.

3. Let A and B be symmetric matrices. Show that AB is symmetric if and only if AB = BA.

4. Show that the diagonal entries of a skew-symmetric matrix are zero.

5. Let A,B be skew-symmetric matrices with AB = BA. Is the matrix AB symmetric or skew-symmetric?

6. Let A be a symmetric matrix of order n with A2 = 0. Is it necessarily true that A = 0?

7. Let A be a nilpotent matrix. Show that there exists a matrix B such that B(I +A) = I = (I +A)B.

1.3.1 Submatrix of a Matrix

Definition 1.3.4 A matrix obtained by deleting some of the rows and/or columns of a matrix is said to be

a submatrix of the given matrix.

For example, if A =

[

1 4 5

0 1 2

]

, a few submatrices of A are

[1], [2],

[

1

0

]

, [1 5],

[

1 5

0 2

]

, A.

But the matrices

[

1 4

1 0

]

and

[

1 4

0 2

]

[

x1

x2

]

, y =

[

y1

y2

]

, A =

[

1 0

0 −1

]

and B =

[

cos θ − sin θ

sin θ cos θ

]

are not submatrices of A.



Linear System of Equations

2.1 Introduction

Let us look at some examples of linear systems.

1. Suppose a, b ∈ R. Consider the system ax = b.

(a) If a 6= 0 then the system has a unique solution x = b
a .

(b) If a = 0 and

i. b 6= 0 then the system has no solution.

ii. b = 0 then the system has infinite number of solutions, namely all x ∈ R.

2. We now consider a system with 2 equations in 2 unknowns.

Consider the equation ax + by = c. If one of the coefficients, a or b is non-zero, then this linear

equation represents a line in R2. Thus for the system

a1x+ b1y = c1 and a2x+ b2y = c2,

the set of solutions is given by the points of intersection of the two lines. There are three cases to

be considered. Each case is illustrated by an example.

(a) Unique Solution

x+ 2y = 1 and x+ 3y = 1. The unique solution is (x, y)t = (1, 0)t.

Observe that in this case, a1b2 − a2b1 6= 0.

(b) Infinite Number of Solutions

x+ 2y = 1 and 2x+ 4y = 2. The set of solutions is (x, y)t = (1− 2y, y)t = (1, 0)t + y(−2, 1)t

with y arbitrary. In other words, both the equations represent the same line.

Observe that in this case, a1b2 − a2b1 = 0, a1c2 − a2c1 = 0 and b1c2 − b2c1 = 0.

(c) No Solution

x+ 2y = 1 and 2x+ 4y = 3. The equations represent a pair of parallel lines and hence there

is no point of intersection.

Observe that in this case, a1b2 − a2b1 = 0 but a1c2 − a2c1 6= 0.

3. As a last example, consider 3 equations in 3 unknowns.

A linear equation ax+ by + cz = d represent a plane in R
3 provided (a, b, c) 6= (0, 0, 0). As in the

case of 2 equations in 2 unknowns, we have to look at the points of intersection of the given three

planes. Here again, we have three cases. The three cases are illustrated by examples.
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(a) Unique Solution

Consider the system x+y+z = 3, x+4y+2z = 7 and 4x+10y−z = 13. The unique solution

to this system is (x, y, z)t = (1, 1, 1)t; i.e. the three planes intersect at a point.

(b) Infinite Number of Solutions

Consider the system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 11. The set of

solutions to this system is (x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary:

the three planes intersect on a line.

(c) No Solution

The system x + y + z = 3, x + 2y + 2z = 5 and 3x + 4y + 4z = 13 has no solution. In this

case, we get three parallel lines as intersections of the above planes taken two at a time.

The readers are advised to supply the proof.

2.2 Definition and a Solution Method

Definition 2.2.1 (Linear System) A linear system of m equations in n unknowns x1, x2, . . . , xn is a set of

equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

... (2.2.1)

am1x1 + am2x2 + · · ·+ amnxn = bm

where for 1 ≤ i ≤ n, and 1 ≤ j ≤ m; aij , bi ∈ R. Linear System (2.2.1) is called homogeneous if

b1 = 0 = b2 = · · · = bm and non-homogeneous otherwise.

We rewrite the above equations in the form Ax = b, where

A =









a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn









, x =









x1

x2

...

xn









, and b =









b1

b2
...

bm









The matrix A is called the coefficient matrix and the block matrix [A b] , is the augmented

matrix of the linear system (2.2.1).

Remark 2.2.2 Observe that the ith row of the augmented matrix [A b] represents the ith equation

and the jth column of the coefficient matrix A corresponds to coefficients of the jth variable xj . That

is, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the entry aij of the coefficient matrix A corresponds to the ith equation

and jth variable xj ..

For a system of linear equations Ax = b, the system Ax = 0 is called the associated homogeneous

system.

Definition 2.2.3 (Solution of a Linear System) A solution of the linear system Ax = b is a column vector

y with entries y1, y2, . . . , yn such that the linear system (2.2.1) is satisfied by substituting yi in place of xi.

That is, if yt = [y1, y2, . . . , yn] then Ay = b holds.

Note: The zero n-tuple x = 0 is always a solution of the system Ax = 0, and is called the trivial

solution. A non-zero n-tuple x, if it satisfies Ax = 0, is called a non-trivial solution.



2.2.1 A Solution Method

Example 2.2.4 Let us solve the linear system x+ 7y + 3z = 11, x+ y + z = 3, and 4x+ 10y − z = 13.

Solution:

1. The above linear system and the linear system

x+ y + z = 3 Interchange the first two equations.

x+ 7y + 3z = 11 (2.2.2)

4x+ 10y − z = 13

have the same set of solutions. (why?)

2. Eliminating x from 2nd and 3rd equation, we get the linear system

x+ y + z = 3

6y + 2z = 8 (obtained by subtracting the first

equation from the second equation.)

6y − 5z = 1 (obtained by subtracting 4 times the first equation

from the third equation.) (2.2.3)

This system and the system (2.2.2) has the same set of solution. (why?)

3. Eliminating y from the last two equations of system (2.2.3), we get the system

x+ y + z = 3

6y + 2z = 8

7z = 7 obtained by subtracting the third equation

from the second equation. (2.2.4)

which has the same set of solution as the system (2.2.3). (why?)

4. The system (2.2.4) and system

x+ y + z = 3

3y + z = 4 divide the second equation by 2

z = 1 divide the second equation by 2 (2.2.5)

has the same set of solution. (why?)

5. Now, z = 1 implies y =
4− 1

3
= 1 and x = 3− (1+1) = 1. Or in terms of a vector, the set of solution

is { (x, y, z)t : (x, y, z) = (1, 1, 1)}.

2.3 Row Operations and Equivalent Systems

Definition 2.3.1 (Elementary Operations) The following operations 1, 2 and 3 are called elementary op-

erations.

1. interchange of two equations, say “interchange the ith and jth equations”;

(compare the system (2.2.2) with the original system.)

 ROW OPERATIONS AND EQUIVALENT SYSTEMS



2. multiply a non-zero constant throughout an equation, say “multiply the kth equation by c 6= 0”;

(compare the system (2.2.5) and the system (2.2.4).)

3. replace an equation by itself plus a constant multiple of another equation, say “replace the kth equation

by kth equation plus c times the jth equation”.

(compare the system (2.2.3) with (2.2.2) or the system (2.2.4) with (2.2.3).)

Observations:

1. In the above example, observe that the elementary operations helped us in getting a linear system

(2.2.5), which was easily solvable.

2. Note that at Step 1, if we interchange the first and the second equation, we get back to the linear

system from which we had started. This means the operation at Step 1, has an inverse operation.

In other words, inverse operation sends us back to the step where we had precisely started.

It will be a useful exercise for the reader to identify the inverse operations at each step in

Example 2.2.4.

So, in Example 2.2.4, the application of a finite number of elementary operations helped us to obtain

a simpler system whose solution can be obtained directly. That is, after applying a finite number of

elementary operations, a simpler linear system is obtained which can be easily solved. Note that the

three elementary operations defined above, have corresponding inverse operations, namely,

1. “interchange the ith and jth equations”,

2. “divide the kth equation by c 6= 0”;

3. “replace the kth equation by kth equation minus c times the jth equation”.

It will be a useful exercise for the reader to identify the inverse operations at each step in

Example 2.2.4.

Definition 2.3.2 (Equivalent Linear Systems) Two linear systems are said to be equivalent if one can be

obtained from the other by a finite number of elementary operations.

The linear systems at each step in Example 2.2.4 are equivalent to each other and also to the original

linear system.

Lemma 2.3.3 Let Cx = d be the linear system obtained from the linear system Ax = b by a single

elementary operation. Then the linear systems Ax = b and Cx = d have the same set of solutions.

Proof. We prove the result for the elementary operation “the kth equation is replaced by kth equation

plus c times the jth equation.” The reader is advised to prove the result for other elementary operations.

In this case, the systems Ax = b and Cx = d vary only in the kth equation. Let (α1, α2, . . . , αn)

be a solution of the linear system Ax = b. Then substituting for αi’s in place of xi’s in the kth and jth

equations, we get

ak1α1 + ak2α2 + · · · aknαn = bk, and aj1α1 + aj2α2 + · · · ajnαn = bj.

Therefore,

(ak1 + caj1)α1 + (ak2 + caj2)α2 + · · ·+ (akn + cajn)αn = bk + cbj . (2.3.1)

But then the kth equation of the linear system Cx = d is

(ak1 + caj1)x1 + (ak2 + caj2)x2 + · · ·+ (akn + cajn)xn = bk + cbj. (2.3.2)
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Therefore, using Equation (2.3.1), (α1, α2, . . . , αn) is also a solution for the kth Equation (2.3.2).

Use a similar argument to show that if (β1, β2, . . . , βn) is a solution of the linear system Cx = d then

it is also a solution of the linear system Ax = b.

Hence, we have the proof in this case. �

Lemma 2.3.3 is now used as an induction step to prove the main result of this section (Theorem

2.3.4).

Theorem 2.3.4 Two equivalent systems have the same set of solutions.

Proof. Let n be the number of elementary operations performed on Ax = b to get Cx = d. We prove

the theorem by induction on n.

If n = 1, Lemma 2.3.3 answers the question. If n > 1, assume that the theorem is true for n = m.

Now, suppose n = m+1. Apply the Lemma 2.3.3 again at the “last step” (that is, at the (m+1)th step

from the mth step) to get the required result using induction. �

Let us formalise the above section which led to Theorem 2.3.4. For solving a linear system of equa-

tions, we applied elementary operations to equations. It is observed that in performing the elementary

operations, the calculations were made on the coefficients (numbers). The variables x1, x2, . . . , xn

and the sign of equality (that is, “ = ”) are not disturbed. Therefore, in place of looking at the system

of equations as a whole, we just need to work with the coefficients. These coefficients when arranged in

a rectangular array gives us the augmented matrix [A b].

Definition 2.3.5 (Elementary Row Operations) The elementary row operations are defined as:

1. interchange of two rows, say “interchange the ith and jth rows”, denoted Rij ;

2. multiply a non-zero constant throughout a row, say “multiply the kth row by c 6= 0”, denoted Rk(c);

3. replace a row by itself plus a constant multiple of another row, say “replace the kth row by kth row

plus c times the jth row”, denoted Rkj(c).

Exercise 2.3.6 Find the inverse row operations corresponding to the elementary row operations that have

been defined just above.

Definition 2.3.7 (Row Equivalent Matrices) Two matrices are said to be row-equivalent if one can be

obtained from the other by a finite number of elementary row operations.

Example 2.3.8 The three matrices given below are row equivalent.





0 1 1 2

2 0 3 5

1 1 1 3





−−→
R12






2 0 3 5

0 1 1 2

1 1 1 3






−−−−−→
R1(1/2)






1 0 3
2

5
2

0 1 1 2

1 1 1 3




 .

Whereas the matrix






0 1 1 2

2 0 3 5

1 1 1 3




 is not row equivalent to the matrix






1 0 1 2

0 2 3 5

1 1 1 3




 .



2.3.1 Gauss Elimination Method

Definition 2.3.9 (Forward/Gauss Elimination Method) Gaussian elimination is a method of solving a

linear system Ax = b (consisting of m equations in n unknowns) by bringing the augmented matrix

[A b] =









a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm









to an upper triangular form








c11 c12 · · · c1n d1

0 c22 · · · c2n d2
...

...
. . .

...
...

0 0 · · · cmn dm









.

This elimination process is also called the forward elimination method.

The following examples illustrate the Gauss elimination procedure.

Example 2.3.10 Solve the linear system by Gauss elimination method.

y + z = 2

2x+ 3z = 5

x+ y + z = 3

Solution: In this case, the augmented matrix is






0 1 1 2

2 0 3 5

1 1 1 3




 . The method proceeds along the fol-

lowing steps.

1. Interchange 1st and 2nd equation (or R12).

2x+ 3z = 5

y + z = 2

x+ y + z = 3






2 0 3 5

0 1 1 2

1 1 1 3




 .

2. Divide the 1st equation by 2 (or R1(1/2)).

x+ 3
2z = 5

2

y + z = 2

x+ y + z = 3






1 0 3
2

5
2

0 1 1 2

1 1 1 3




 .

3. Add −1 times the 1st equation to the 3rd equation (or R31(−1)).

x+ 3
2z = 5

2

y + z = 2

y − 1
2z = 1

2






1 0 3
2

5
2

0 1 1 2

0 1 − 1
2

1
2




 .

4. Add −1 times the 2nd equation to the 3rd equation (or R32(−1)).

x+ 3
2z = 5

2

y + z = 2

− 3
2z = − 3

2






1 0 3
2

5
2

0 1 1 2

0 0 − 3
2 − 3

2




 .
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5. Multiply the 3rd equation by −2
3 (or R3(− 2

3 )).

x+ 3
2z = 5

2

y + z = 2

z = 1






1 0 3
2

5
2

0 1 1 2

0 0 1 1




 .

The last equation gives z = 1, the second equation now gives y = 1. Finally the first equation gives

x = 1. Hence the set of solutions is (x, y, z)t = (1, 1, 1)t, a unique solution.

Example 2.3.11 Solve the linear system by Gauss elimination method.

x+ y + z = 3

x+ 2y + 2z = 5

3x+ 4y + 4z = 11

Solution: In this case, the augmented matrix is






1 1 1 3

1 2 2 5

3 4 4 11




 and the method proceeds as follows:

1. Add −1 times the first equation to the second equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 11






1 1 1 3

0 1 1 2

3 4 4 11




 .

2. Add −3 times the first equation to the third equation.

x+ y + z = 3

y + z = 2

y + z = 2






1 1 1 3

0 1 1 2

0 1 1 2




 .

3. Add −1 times the second equation to the third equation

x+ y + z = 3

y + z = 2






1 1 1 3

0 1 1 2

0 0 0 0




 .

Thus, the set of solutions is (x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary. In other

words, the system has infinite number of solutions.

Example 2.3.12 Solve the linear system by Gauss elimination method.

x+ y + z = 3

x+ 2y + 2z = 5

3x+ 4y + 4z = 12

Solution: In this case, the augmented matrix is






1 1 1 3

1 2 2 5

3 4 4 12




 and the method proceeds as follows:

1. Add −1 times the first equation to the second equation.

x+ y + z = 3

y + z = 2

3x+ 4y + 4z = 12






1 1 1 3

0 1 1 2

3 4 4 12




 .
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2. Add −3 times the first equation to the third equation.

x+ y + z = 3

y + z = 2

y + z = 3






1 1 1 3

0 1 1 2

0 1 1 3




 .

3. Add −1 times the second equation to the third equation

x+ y + z = 3

y + z = 2

0 = 1






1 1 1 3

0 1 1 2

0 0 0 1




 .

The third equation in the last step is

0x+ 0y + 0z = 1.

This can never hold for any value of x, y, z. Hence, the system has no solution.

Remark 2.3.13 Note that to solve a linear system, Ax = b, one needs to apply only the elementary

row operations to the augmented matrix [A b].

2.4 Row Reduced Echelon Form of a Matrix

Definition 2.4.1 (Row Reduced Form of a Matrix) A matrix C is said to be in the row reduced form if

1. the first non-zero entry in each row of C is 1;

2. the column containing this 1 has all its other entries zero.

A matrix in the row reduced form is also called a row reduced matrix.

Example 2.4.2 1. One of the most important examples of a row reduced matrix is the n × n identity

matrix, In. Recall that the (i, j)th entry of the identity matrix is

Iij = δij =







1 if i = j

0 if i 6= j.
.

δij is usually referred to as the Kronecker delta function.

2. The matrices








0 1 0 −1 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 1







and








0 1 0 4 0

0 0 0 0 1

0 0 1 1 0

0 0 0 0 0







are also in row reduced form.

3. The matrix








1 0 0 0 5

0 1 1 1 2

0 0 0 1 1

0 0 0 0 0







is not in the row reduced form. (why?)

Definition 2.4.3 (Leading Term, Leading Column) For a row-reduced matrix, the first non-zero entry of

any row is called a leading term. The columns containing the leading terms are called the leading

columns.
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Definition 2.4.4 (Basic, Free Variables) Consider the linear system Ax = b in n variables and m equa-

tions. Let [C d] be the row-reduced matrix obtained by applying the Gauss elimination method to the

augmented matrix [A b]. Then the variables corresponding to the leading columns in the first n columns of

[C d] are called the basic variables. The variables which are not basic are called free variables.

The free variables are called so as they can be assigned arbitrary values and the value of the basic

variables can then be written in terms of the free variables.

Observation: In Example 2.3.11, the solution set was given by

(x, y, z)t = (1, 2− z, z)t = (1, 2, 0)t + z(0,−1, 1)t, with z arbitrary.

That is, we had two basic variables, x and y, and z as a free variable.

Remark 2.4.5 It is very important to observe that if there are r non-zero rows in the row-reduced form

of the matrix then there will be r leading terms. That is, there will be r leading columns. Therefore,

if there are r leading terms and n variables, then there will be r basic variables and

n− r free variables.

2.4.1 Gauss-Jordan Elimination

We now start with Step 5 of Example 2.3.10 and apply the elementary operations once again. But this

time, we start with the 3rd row.

I. Add −1 times the third equation to the second equation (or R23(−1)).

x+ 3
2z = 5

2

y = 2

z = 1






1 0 3
2

5
2

0 1 0 1

0 0 1 1




 .

II. Add −3
2 times the third equation to the first equation (or R13(− 3

2 )).

x = 1

y = 1

z = 1






1 0 0 1

0 1 0 1

0 0 1 1




 .

III. From the above matrix, we directly have the set of solution as (x, y, z)t = (1, 1, 1)t.

Definition 2.4.6 (Row Reduced Echelon Form of a Matrix) A matrix C is said to be in the row reduced

echelon form if

1. C is already in the row reduced form;

2. The rows consisting of all zeros comes below all non-zero rows; and

3. the leading terms appear from left to right in successive rows. That is, for 1 ≤ ℓ ≤ k, let iℓ be the

leading column of the ℓth row. Then i1 < i2 < · · · < ik.

Example 2.4.7 SupposeA =






0 1 0 2

0 0 0 0

0 0 1 1




 andB =






0 0 0 1 0

1 1 0 0 0

0 0 0 0 1




 are in row reduced form. Then the

corresponding matrices in the row reduced echelon form are respectively,






0 1 0 2

0 0 1 1

0 0 0 0




 and






1 1 0 0 0

0 0 0 1 0

0 0 0 0 1




 .



Definition 2.4.8 (Row Reduced Echelon Matrix) A matrix which is in the row reduced echelon form is

also called a row reduced echelon matrix.

Definition 2.4.9 (Back Substitution/Gauss-Jordan Method) The procedure to get to Step II of Example

2.3.10 from Step 5 of Example 2.3.10 is called the back substitution.

The elimination process applied to obtain the row reduced echelon form of the augmented matrix is called

the Gauss-Jordan elimination.

That is, the Gauss-Jordan elimination method consists of both the forward elimination and the backward

substitution.

Method to get the row-reduced echelon form of a given matrix A

Let A be an m× n matrix. Then the following method is used to obtain the row-reduced echelon form

the matrix A.

Step 1: Consider the first column of the matrix A.

If all the entries in the first column are zero, move to the second column.

Else, find a row, say ith row, which contains a non-zero entry in the first column. Now, interchange

the first row with the ith row. Suppose the non-zero entry in the (1, 1)-position is α 6= 0. Divide

the whole row by α so that the (1, 1)-entry of the new matrix is 1. Now, use the 1 to make all the

entries below this 1 equal to 0.

Step 2: If all entries in the first column after the first step are zero, consider the right m × (n − 1)

submatrix of the matrix obtained in step 1 and proceed as in step 1.

Else, forget the first row and first column. Start with the lower (m− 1)× (n− 1) submatrix of the

matrix obtained in the first step and proceed as in step 1.

Step 3: Keep repeating this process till we reach a stage where all the entries below a particular row,

say r, are zero. Suppose at this stage we have obtained a matrix C. Then C has the following

form:

1. the first non-zero entry in each row of C is 1. These 1’s are the leading terms of C

and the columns containing these leading terms are the leading columns.

2. the entries of C below the leading term are all zero.

Step 4: Now use the leading term in the rth row to make all entries in the rth leading column equal

to zero.

Step 5: Next, use the leading term in the (r − 1)th row to make all entries in the (r − 1)th leading

column equal to zero and continue till we come to the first leading term or column.

The final matrix is the row-reduced echelon form of the matrix A.

Remark 2.4.10 Note that the row reduction involves only row operations and proceeds from left to

right. Hence, if A is a matrix consisting of first s columns of a matrix C, then the row reduced form

of A will be the first s columns of the row reduced form of C.

The proof of the following theorem is beyond the scope of this book and is omitted.

Theorem 2.4.11 The row reduced echelon form of a matrix is unique.

Exercise 2.4.12 1. Solve the following linear system.



2.4. ROW REDUCED ECHELON FORM OF A MATRIX 29

(a) x+ y + z + w = 0, x− y + z + w = 0 and −x+ y + 3z + 3w = 0.

(b) x+ 2y + 3z = 1 and x+ 3y + 2z = 1.

(c) x+ y + z = 3, x+ y − z = 1 and x+ y + 7z = 6.

(d) x+ y + z = 3, x+ y − z = 1 and x+ y + 4z = 6.

(e) x+ y + z = 3, x+ y − z = 1, x+ y + 4z = 6 and x+ y − 4z = −1.

2. Find the row-reduced echelon form of the following matrices.

1.








−1 1 3 5

1 3 5 7

9 11 13 15

−3 −1 13







, 2.








10 8 6 4

2 0 −2 −4

−6 −8 −10 −12

−2 −4 −6 −8








2.4.2 Elementary Matrices

Definition 2.4.13 A square matrix E of order n is called an elementary matrix if it is obtained by

applying exactly one elementary row operation to the identity matrix, In.

Remark 2.4.14 There are three types of elementary matrices.

1. Eij , which is obtained by the application of the elementary row operation Rij to the identity

matrix, In. Thus, the (k, ℓ)th entry of Eij is (Eij)(k,ℓ) =







1 if k = ℓ and ℓ 6= i, j

1 if (k, ℓ) = (i, j) or (k, ℓ) = (j, i)

0 otherwise

.

2. Ek(c), which is obtained by the application of the elementary row operation Rk(c) to the identity

matrix, In. The (i, j)th entry of Ek(c) is (Ek(c))(i,j) =







1 if i = j and i 6= k

c if i = j = k

0 otherwise

.

3. Eij(c), which is obtained by the application of the elementary row operation Rij(c) to the identity

matrix, In. The (k, ℓ)th entry of Eij(c) is (Eij)(k,ℓ)







1 if k = ℓ

c if (k, ℓ) = (i, j)

0 otherwise

.

In particular,

E23 =






1 0 0

0 0 1

0 1 0




 , E1(c) =






c 0 0

0 1 0

0 0 1




 , and E23(c) =






1 0 0

0 1 c

0 0 1




 .

Example 2.4.15 1. Let A =






1 2 3 0

2 0 3 4

3 4 5 6




 . Then






1 2 3 0

2 0 3 4

3 4 5 6





−−→
R23






1 2 3 0

3 4 5 6

2 0 3 4




 =






1 0 0

0 0 1

0 1 0




A = E23A.

That is, interchanging the two rows of the matrix A is same as multiplying on the left by the corre-

sponding elementary matrix. In other words, we see that the left multiplication of elementary matrices

to a matrix results in elementary row operations.



2. Consider the augmented matrix [A b] =






0 1 1 2

2 0 3 5

1 1 1 3




 . Then the result of the steps given below is

same as the matrix product

E23(−1)E12(−1)E3(1/3)E32(2)E23E21(−2)E13[A b].







0 1 1 2

2 0 3 5

1 1 1 3







−−→
R13







1 1 1 3

2 0 3 5

0 1 1 2







−−−−−→
R21(−2)







1 1 1 3

0 −2 1 −1

0 1 1 2







−−→
R23







1 1 1 3

0 1 1 2

0 −2 1 −1







−−−−→
R32(2)







1 1 1 3

0 1 1 2

0 0 3 3







−−−−−→
R3(1/3)







1 1 1 3

0 1 1 2

0 0 1 1







−−−−−→
R12(−1)







1 0 0 1

0 1 1 2

0 0 1 1







−−−−−→
R23(−1)







1 0 0 1

0 1 0 1

0 0 1 1







Now, consider an m × n matrix A and an elementary matrix E of order n. Then multiplying by E

on the right to A corresponds to applying column transformation on the matrix A. Therefore, for each

elementary matrix, there is a corresponding column transformation. We summarize:

Definition 2.4.16 The column transformations obtained by right multiplication of elementary matrices are

called elementary column operations.

Example 2.4.17 Let A =






1 2 3

2 0 3

3 4 5




 and consider the elementary column operation f which interchanges

the second and the third column of A. Then f(A) =






1 3 2

2 3 0

3 5 4




 = A






1 0 0

0 0 1

0 1 0




 = AE23.

Exercise 2.4.18 1. Let e be an elementary row operation and let E = e(I) be the corresponding ele-

mentary matrix. That is, E is the matrix obtained from I by applying the elementary row operation e.

Show that e(A) = EA.

2. Show that the Gauss elimination method is same as multiplying by a series of elementary matrices on

the left to the augmented matrix.

Does the Gauss-Jordan method also corresponds to multiplying by elementary matrices on the left?

Give reasons.

3. Let A and B be two m×n matrices. Then prove that the two matrices A,B are row-equivalent if and

only if B = PA, where P is product of elementary matrices. When is this P unique?

2.5 Rank of a Matrix

In previous sections, we solved linear systems using Gauss elimination method or the Gauss-Jordan

method. In the examples considered, we have encountered three possibilities, namely

1. existence of a unique solution,

2. existence of an infinite number of solutions, and



3. no solution.

Based on the above possibilities, we have the following definition.

Definition 2.5.1 (Consistent, Inconsistent) A linear system is called consistent if it admits a solution

and is called inconsistent if it admits no solution.

The question arises, as to whether there are conditions under which the linear system Ax = b is

consistent. The answer to this question is in the affirmative. To proceed further, we need a few definitions

and remarks.

Recall that the row reduced echelon form of a matrix is unique and therefore, the number of non-zero

rows is a unique number. Also, note that the number of non-zero rows in either the row reduced form

or the row reduced echelon form of a matrix are same.

Definition 2.5.2 (Row rank of a Matrix) The number of non-zero rows in the row reduced form of a

matrix is called the row-rank of the matrix.

By the very definition, it is clear that row-equivalent matrices have the same row-rank. For a matrix A,

we write ‘row-rank (A)’ to denote the row-rank of A.

Example 2.5.3 1. Determine the row-rank of A =






1 2 1

2 3 1

1 1 2




 .

Solution: To determine the row-rank of A, we proceed as follows.

(a)






1 2 1

2 3 1

1 1 2






−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 1




 .

(b)






1 2 1

0 −1 −1

0 −1 1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 2




 .

(c)






1 2 1

0 1 1

0 0 2






−−−−−−−−−−−−→
R3(1/2), R12(−2)






1 0 −1

0 1 1

0 0 1




 .

(d)






1 0 −1

0 1 1

0 0 1





−−−−−−−−−−−→
R23(−1), R13(1)






1 0 0

0 1 0

0 0 1






The last matrix in Step 1d is the row reduced form ofA which has 3 non-zero rows. Thus, row-rank(A) = 3.

This result can also be easily deduced from the last matrix in Step 1b.

2. Determine the row-rank of A =






1 2 1

2 3 1

1 1 0




 .

Solution: Here we have

(a)






1 2 1

2 3 1

1 1 0





−−−−−−−−−−−−−→
R21(−2), R31(−1)






1 2 1

0 −1 −1

0 −1 −1




 .

(b)






1 2 1

0 −1 −1

0 −1 −1






−−−−−−−−−−−→
R2(−1), R32(1)






1 2 1

0 1 1

0 0 0




 .



From the last matrix in Step 2b, we deduce row-rank(A) = 2.

Remark 2.5.4 Let Ax = b be a linear system withm equations and n unknowns. Then the row-reduced

echelon form of A agrees with the first n columns of [A b], and hence

row-rank(A) ≤ row-rank([A b]).

The reader is advised to supply a proof.

Remark 2.5.5 Consider a matrix A. After application of a finite number of elementary column oper-

ations (see Definition 2.4.16) to the matrix A, we can have a matrix, say B, which has the following

properties:

1. The first nonzero entry in each column is 1.

2. A column containing only 0’s comes after all columns with at least one non-zero entry.

3. The first non-zero entry (the leading term) in each non-zero column moves down in successive

columns.

Therefore, we can define column-rank of A as the number of non-zero columns in B. It will be

proved later that

row-rank(A) = column-rank(A).

Thus we are led to the following definition.

Definition 2.5.6 The number of non-zero rows in the row reduced form of a matrix A is called the rank of

A, denoted rank (A).

Theorem 2.5.7 Let A be a matrix of rank r. Then there exist elementary matrices E1, E2, . . . , Es and

F1, F2, . . . , Fℓ such that

E1E2 . . . Es A F1F2 . . . Fℓ =

[

Ir 0

0 0

]

.

Proof. Let C be the row reduced echelon matrix obtained by applying elementary row operations to

the given matrix A. As rank(A) = r, the matrix C will have the first r rows as the non-zero rows. So by

Remark 2.4.5, C will have r leading columns, say i1, i2, . . . , ir. Note that, for 1 ≤ s ≤ r, the iths column

will have 1 in the sth row and zero elsewhere.

We now apply column operations to the matrix C. Let D be the matrix obtained from C by succes-

sively interchanging the sth and iths column of C for 1 ≤ s ≤ r. Then the matrix D can be written in the

form

[

Ir B

0 0

]

, where B is a matrix of appropriate size. As the (1, 1) block of D is an identity matrix,

the block (1, 2) can be made the zero matrix by application of column operations to D. This gives the

required result. �

Exercise 2.5.8 1. Determine the ranks of the coefficient and the augmented matrices that appear in Part

1 and Part 2 of Exercise 2.4.12.

2. For any matrix A, prove that rank(A) = rank(At).

3. Let A be an n× n matrix with rank(A) = n. Then prove that A is row-equivalent to In.



2.6 Existence of Solution of Ax = b

We try to understand the properties of the set of solutions of a linear system through an example, using

the Gauss-Jordan method. Based on this observation, we arrive at the existence and uniqueness results

for the linear system Ax = b. This example is more or less a motivation.

2.6.1 Example

Consider a linear system Ax = b which after the application of the Gauss-Jordan method reduces to a

matrix [C d] with

[C d] =













1 0 2 −1 0 0 2 8

0 1 1 3 0 0 5 1

0 0 0 0 1 0 −1 2

0 0 0 0 0 1 1 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0













.

For this particular matrix [C d], we want to see the set of solutions. We start with some observations.

Observations:

1. The number of non-zero rows in C is 4. This number is also equal to the number of non-zero rows

in [C d].

2. The first non-zero entry in the non-zero rows appear in columns 1, 2, 5 and 6.

3. Thus, the respective variables x1, x2, x5 and x6 are the basic variables.

4. The remaining variables, x3, x4 and x7 are free variables.

5. We assign arbitrary constants k1, k2 and k3 to the free variables x3, x4 and x7, respectively.

Hence, we have the set of solutions as















x1

x2

x3

x4

x5

x6

x7















=















8− 2k1 + k2 − 2k3

1− k1 − 3k2 − 5k3

k1

k2

2 + k3

4− k3

k3















=















8

1

0

0

2

4

0















+ k1















−2

−1

1

0

0

0

0















+ k2















1

−3

0

1

0

0

0















+ k3















−2

−5

0

0

1

−1

1















,



where k1, k2 and k3 are arbitrary.

Let u0 =















8

1

0

0

2

4

0















, u1 =















−2

−1

1

0

0

0

0















, u2 =















1

−3

0

1

0

0

0















and u3 =















−2

−5

0

0

1

−1

1















.

Then it can easily be verified that Cu0 = d, and for 1 ≤ i ≤ 3, Cui = 0.

A similar idea is used in the proof of the next theorem and is omitted. The interested readers can

read the proof in Appendix 14.1.

2.6.2 Main Theorem

Theorem 2.6.1 [Existence and Non-existence] Consider a linear system Ax = b, where A is a m×n matrix,

and x, b are vectors with orders n×1, and m×1, respectively. Suppose rank (A) = r and rank([A b]) = ra.

Then exactly one of the following statement holds:

1. if ra = r < n, the set of solutions of the linear system is an infinite set and has the form

{u0 + k1u1 + k2u2 + · · ·+ kn−run−r : ki ∈ R, 1 ≤ i ≤ n− r},

where u0,u1, . . . ,un−r are n× 1 vectors satisfying Au0 = b and Aui = 0 for 1 ≤ i ≤ n− r.

2. if ra = r = n, the solution set of the linear system has a unique n× 1 vector x0 satisfying Ax0 = b.

3. If r < ra, the linear system has no solution.

Remark 2.6.2 Let A be an m × n matrix and consider the linear system Ax = b. Then by Theorem

2.6.1, we see that the linear system Ax = b is consistent if and only if

rank (A) = rank([A b]).

The following corollary of Theorem 2.6.1 is a very important result about the homogeneous linear

system Ax = 0.

Corollary 2.6.3 Let A be an m×n matrix. Then the homogeneous system Ax = 0 has a non-trivial solution

if and only if rank(A) < n.

Proof. Suppose the system Ax = 0 has a non-trivial solution, x0. That is, Ax0 = 0 and x0 6= 0. Under

this assumption, we need to show that rank(A) < n. On the contrary, assume that rank(A) = n. So,

n = rank(A) = rank
(
[A 0]

)
= ra.

Also A0 = 0 implies that 0 is a solution of the linear system Ax = 0. Hence, by the uniqueness of the

solution under the condition r = ra = n (see Theorem 2.6.1), we get x0 = 0. A contradiction to the fact

that x0 was a given non-trivial solution.

Now, let us assume that rank(A) < n. Then

ra = rank
(
[A 0]

)
= rank(A) < n.

So, by Theorem 2.6.1, the solution set of the linear system Ax = 0 has infinite number of vectors x

satisfying Ax = 0. From this infinite set, we can choose any vector x0 that is different from 0. Thus, we

have a solution x0 6= 0. That is, we have obtained a non-trivial solution x0.
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